13η ΣΥΝΕΔΡΙΑΣΗ - ΠΕΜΠΤΗ 21-12-2017
Στη σημερινή μας συνάντηση ασχοληθήκαμε με το παράδοξο της διχοτομίας του Αρχαίου Έλληνα φιλόσοφου Ζήνωνος του Ελεάτη.
Το παράδοξο αυτό έχει ως μαθηματικό υπόβαθρο ένα από τα πρώτα αθροίσματα με άπειρους όρους στην ιστορία των Μαθηματικών (1/2+1/4+1/8+1/16+...) που παρά το άπειρο πλήθος όρων, δεν ξεπερνάει ποτέ την μονάδα. Έχει όπως λέμε στα Μαθηματικά όριο 1.
Το παράδοξο (παρά την δόξα-γνώμη) συνίσταται στο ότι αν τα κλάσματα αντιστοιχιστούν σε μήκη ευθυγράμμων διαδοχικών τμημάτων, δημιουργείται η εντύπωση ότι ένας δρομέας κινούμενος σε αυτά δεν μπορεί να καλύψει τη συνολική απόσταση μιας μονάδας μέτρησης, αφού πάντα θα υπάρχει ένα ακόμα τμήμα να διανύσει.
Η άρση του παραδόξου αγγίζει τα θεμέλια της Επιστημολογίας των Μαθηματικών και της σύνδεσης Μαθηματικών και Φιλοσοφίας, καθώς εάν ο δρομέας έχει υλικές διαστάσεις είναι προφανές ότι κάποια στιγμή οι διαστάσεις αυτές θα καλύψουν το εναπομένον τμήμα. Αν όμως είναι το νοητό (άυλο και ιδεατό) σημείο των Μαθηματικών, όχι μόνον δεν φθάνει από το αρχικό σημείο Α στο τελικό σημείο Β, αλλά ούτε καν ξεκινάει, καθώς δεν υπόκειται σε κίνηση και χρόνο.
Το παράδοξο του Ζήνωνος οδηγεί αργότερα τον Πλάτωνα στο ερώτημα για τη φύση του κόσμου (οντολογία) και της γνώσης του (γνωσιολογία). Έτσι διαχωρίζει τον κόσμο σε υλικό-αισθητό και ιδεατό-νοητό ενώ αντίστοιχα τη γνώση στην κατώτερη κατηγορία, προερχόμενη από τις ατελείς ανθρώπινες αισθήσεις και στην ανώτερη γνώση προερχόμενη από τη διάνοια.
Στη σημερινή μας συνάντηση ασχοληθήκαμε με το παράδοξο της διχοτομίας του Αρχαίου Έλληνα φιλόσοφου Ζήνωνος του Ελεάτη.
Το παράδοξο αυτό έχει ως μαθηματικό υπόβαθρο ένα από τα πρώτα αθροίσματα με άπειρους όρους στην ιστορία των Μαθηματικών (1/2+1/4+1/8+1/16+...) που παρά το άπειρο πλήθος όρων, δεν ξεπερνάει ποτέ την μονάδα. Έχει όπως λέμε στα Μαθηματικά όριο 1.
Το παράδοξο (παρά την δόξα-γνώμη) συνίσταται στο ότι αν τα κλάσματα αντιστοιχιστούν σε μήκη ευθυγράμμων διαδοχικών τμημάτων, δημιουργείται η εντύπωση ότι ένας δρομέας κινούμενος σε αυτά δεν μπορεί να καλύψει τη συνολική απόσταση μιας μονάδας μέτρησης, αφού πάντα θα υπάρχει ένα ακόμα τμήμα να διανύσει.
Μια μονάδα στο νοητό κόσμο των Μαθηματικών μπορεί να
υποδιπλασιάζεται (διαιρείται δια δύο) άπειρο πλήθος φορών. Μπορεί να γίνει μια
τέτοια αντίστοιχη υλική διαίρεση σε ένα αισθητό-υλικό
τμήμα; Τα περίφημα «παράδοξα» «του Αχιλλέα και της χελώνας» ή της
«διχοτομίας», που αποδίδονται στον Ελεάτη φιλόσοφο Ζήνωνα, εισάγουν στον
προβληματισμό για τη σχέση νοητών κατασκευών,
όπως του αθροίσματος του απείρου πλήθους
όρων : ½ + ¼ + 1/8 + 1/16+ 1/32 + … ,
ή της άπειρης διχοτόμησης ενός τμήματος,
με τον κόσμο των αισθητών-υλικών φαινομένων. Ουσιαστικά έθεσαν
τις βάσεις του διαλόγου, ο οποίος πήρε πιο τυπική μορφή λίγο αργότερα με τον Εύδοξο (400-περ.
355π.X.) και τον Αρχιμήδη (περ. 287 π.Χ- 212 π.Χ.). Ο διάλογος αυτός συνεχίστηκε στην
Αναγέννηση έως περίπου τα τέλη του 19ου αιώνα και δημιούργησε τον βασικότερο
κλάδο των Μαθηματικών , τον Απειροστικό Λογισμό. Δημιούργησε όμως και
αντίστοιχο γόνιμο φιλοσοφικό διάλογο διασύνδεσης Μαθηματικών και Φιλοσοφίας.
Το παράδοξο του Ζήνωνος οδηγεί αργότερα τον Πλάτωνα στο ερώτημα για τη φύση του κόσμου (οντολογία) και της γνώσης του (γνωσιολογία). Έτσι διαχωρίζει τον κόσμο σε υλικό-αισθητό και ιδεατό-νοητό ενώ αντίστοιχα τη γνώση στην κατώτερη κατηγορία, προερχόμενη από τις ατελείς ανθρώπινες αισθήσεις και στην ανώτερη γνώση προερχόμενη από τη διάνοια.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.