Παρασκευή 26 Ιανουαρίου 2018

Στοιχεία από τη Μορφοκλασματική Γεωμετρία (Fractals)

19η ΣΥNANTHΣΗ - ΠΑΡΑΣΚΕΥΗ 26-1-2018

Στην σημερινή μας συνάντηση κάναμε μια εισαγωγή στην Γεωμετρία των Fractals.
Βασική ιδιότητα ενός Fractal αντικειμένου είναι η αυτοομοιότητα (self similarity).




Σχεδιάσαμε το θεωρητικό μοντέλο "τρίγωνο του Sierpinski" στο οποίο διαπιστώσαμε την αυτοομοιότητα :


καθώς και μερικές από τις βασικές ιδιαιτερότητες του (Άπειρο μήκος, Μηδενικό εμβαδόν).

Είδαμε ότι μπορεί να παραχθεί από παιχνίδι τύχης (Chaos Game).

Βασικά στοιχεία Fractal Αντικειμένων και διαφορά τους από τα μη Fractal : 
Ένα Fractal διατηρεί τη δομή του ακόμα και σε απειροελάχιστο τμήμα του, σε αντίθεση με ένα μη fractal. Π.χ. κάθε κύκλος μπορεί να θεωρηθεί ως άθροισμα απείρων απειροελάχιστων ευθύγραμμων τμημάτων (άρα μπορεί να διαφορισθεί και κατόπιν να ολοκληρωθεί), όχι όμως και η νιφάδα του Koch αλλά και οποιοδήποτε Fractal: 

Μιλήσαμε για τη χρησιμότητα των Fractals στην επιστημονική έρευνα και σε επόμενη συνάντηση θα συζητήσουμε για την έννοια της κλασματικής διάστασης και της σχέσης με την επιστήμη του Χάους.  

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.